

When you graph quadratic functions (which we will do later in this unit), you get parabolas that open up or open down.

The **vertex** is either the highest point or the lowest point (depending on the shape) of a quadratic function. When we write the quadratic function in **vertex** form, it is easy to see the coordinates of the **vertex**.

Example 1

Write the quadratic function $y = x^2 - 6x + 11$ in vertex form and identify the vertex.

Step 1- Move the number (the *c* in $y = ax^2 + bx + c$) over to the side with *y*. Leave some space before the = sign.

$$y = x^{2} - 6x + 11$$

$$y - 11 = x^{2} - 6x$$

Step 2- We need *a* (the coefficient of x^2) to be 1. If it isn't, then factor out whatever *a* is from the right side (don't worry about the left side).

We don't have to worry about this because a = 1 for us. We can go on to Step 3.

Step 3- Begin to complete the square on the right side.

$$y - 11 + m = x^{2} - 6x + m$$

$$(-6) \div 2 = -3 \longrightarrow (-3)^{2} = 9$$

$$y - 11 + m = x^{2} - 6x + 9$$

Step 4- Add to the left side to balance what you added to the right side in Step 3. This won't be tricky this time (it will be in the next example).

Step 5- Finish completing the square on the right side and the result will be in **vertex form**.

$$y - 11 + 9 = x^2 - 6x + 9$$

 $y - 2 = (x - 3)^2$

Step 6- Use $y - k = a(x - h)^2$ to identify the vertex (h, k).

$$y - 2 = (x - 3)^2$$

The vertex is (3, 2)

Example 2

Write the quadratic function $y = 3x^2 - 12x + 1$ in vertex form and identify the vertex.

Step 1- Move the number (the *c* in $y = ax^2 + bx + c$) over to the side with *y*. Leave some space before the = sign.

$$y = 3x^2 - 12x + 1$$

y - 1 = $3x^2 - 12x$

Step 2- We need *a* (the coefficient of x^2) to be 1. If it isn't, then factor out whatever *a* is from the right side (don't worry about the left side).

Right now, a = 3. We will factor out 3 from the right side and leave some space for Step 3.

$$y-1 = 3x^2 - 12x y-1 = 3(x^2 - 4x)$$

Step 3- Begin to complete the square on the right side.

$$y - 1 + m = 3(x^{2} - 4x + m)$$

$$(-4) \div 2 = -2 \longrightarrow (-2)^{2} = 4$$

$$y - 1 + m = 3(x^{2} - 4x + 4)$$

Step 4- Add to the left side to balance what you added to the right side in Step 3.

Be careful! We filled in with a 4, but we actually added a total of 12 to the right side (remember the 3 we factored out in Step 2?).

$$y - 1 + 2 = 3(x^2 - 4x + 4)$$

$$y - 1 + 12 = 3(x^2 - 4x + 4)$$
We added 3 • (4) = 12 to
the right side, so we will
add 12 to the left side

BowerPower.net

Step 5- Finish completing the square on the right side and the result will be in **vertex form**.

$$y + 11 = 3(x^2 - 4x + 4)$$
$$y + 11 = 3(x - 2)^2$$

Step 6- Use $y - k = a(x - h)^2$ to identify the vertex (h, k).

$$y + 11 = 3(x - 2)^{2}$$
$$y - (-11) = 3(x - 2)^{2}$$
The vertex is (2, -11)